

K7 / Department for Nanostructured Materials

SEMINAR

Thursday, 26.10.2023, 13:00, Kolar's Lecture Hall

Influence of (alkali) cations on the phase transformations from γ to α Alumina

Prof. Dr. Mehmet Ali Gulgun, (Sabanci University, Turkey)

Corundum and transition alumina powders are commonly produced through the Bayer process Digestion of bauxite in a sodium hydroxide solution is followed by gibbsite precipitation, which contains significant amounts of Na⁺ ions. During the de-hydroxylation of gibbsite, Na⁺ is associated with retardation of the structural phase transformations between transition alumina and corundum $(\alpha$ -Al₂O₃) phases. The exact role of Na is unclear. The influence of Na⁺ ions on the phase transformation of γ -Al₂O₃ to α -alumina was investigated by varying the concentration of NaOH in aqueous γ -Al₂O₃ suspensions. The phase transformation behavior of γ -Al₂O₃ was monitored through thermal analysis, XRD, SEM, XPS, and TEM. As the Na concentration in γ -alumina suspensions increased, the amount of α -Al₂O₃ decreased in samples that were heat treated at 1200 °C for 2 h. XPS analysis indicated that washing transition alumina powders with NH₄OH solutions had decreased the surface concentration of Na⁺ and facilitated the phase transformation to α -Al₂O₂. Experiments with other (alkali) cations as well as other anions indicated that % blocking of specific sites on the surface may be effective in retardation. Although significant advances in understanding is made, the quest is ongoing.

Kindly invited.